The discipline of pharmacology can be divided into many sub disciplines each with a specific focus.

Clinical pharmacology

Clinical pharmacology is the basic science of pharmacology with an added focus on the application of pharmacological principles and methods in the medical clinic and towards patient care and outcomes.

Neuropharmacology

Neuropharmacology is the study of the effects of medication on central and peripheral nervous system functioning.

Psychopharmacology

Psychopharmacology, also known as behavioral pharmacology, is the study of the effects of medication on the psyche (psychology), observing changed behaviors of the body and mind, and how molecular events are manifest in a measurable behavioral form. Psychopharmacology is an interdisciplinary field which studies behavioral effects of psychoactive drugs. It incorporates approaches and techniques from neuropharmacology, animal behavior and behavioral neuroscience, and is interested in the behavioral and neurobiological mechanisms of action of psychoactive drugs. Another goal of behavioral pharmacology is to develop animal behavioral models to screen chemical compounds with therapeutic potentials. People in this field (called behavioral pharmacologists) typically use small animals (e.g. rodents) to study psychotherapeutic drugs such as antipsychotics, antidepressants and anxiolytics, and drugs of abuse such as nicotine, cocaine and methamphetamine. Ethopharmacology (not to be confused with ethnopharmacology) is a term which has been in use since the 1960s[7] and derives from the Greek word ἦθος ethos meaning character and "pharmacology" the study of drug actions and mechanism.

Cardiovascular pharmacology

Cardiovascular pharmacology is the study of the effects of drugs on the entire cardiovascular system, including the heart and blood vessels.

Pharmacogenetics

Pharmacogenetics is clinical testing of genetic variation that gives rise to differing response to drugs.

Pharmacogenomics

Pharmacogenomics is the application of genomic technologies to drug discovery and further characterization of older drugs.

Pharmacoepidemiology

Pharmacoepidemiology is the study of the effects of drugs in large numbers of people.

Safety pharmacology

Safety pharmacology specialises in detecting and investigating potential undesirable pharmacodynamic effects of new chemical entities (NCEs) on physiological functions in relation to exposure in the therapeutic range and above.

Systems pharmacology

Systems pharmacology is the coding system principles in the field of pharmacology.

Toxicology

Toxicology is the study of the adverse effects, molecular targets, and characterization of drugs or any chemical substance in excess (including those beneficial in lower doses).

Theoretical pharmacology

Theoretical pharmacology is a relatively new and rapidly expanding field of research activity in which many of the techniques of computational chemistry, in particular computational quantum chemistry and the method of molecular mechanics, are proving to be of great value. Theoretical pharmacologists aim at rationalizing the relation between the activity of a particular drug, as observed experimentally, and its structural features as derived from computer experiments. They aim to find structure—activity relations. Furthermore, on the basis of the structure of a given organic molecule, the theoretical pharmacologist aims at predicting the biological activity of new drugs that are of the same general type as existing drugs. More ambitiously, it aims to predict entirely new classes of drugs, tailor-made for specific purposes.

Posology

Posology is the study of how medicines are dosed. This depends upon various factors including age, climate, weight, sex, elimination rate of drug, genetic polymorphism and time of administration. It is derived from the Greek words πόσος posos meaning "how much?" and -λογία -logia "study of".[8]

Pharmacognosy

Pharmacognosy is a branch of pharmacology dealing especially with the composition, use, and development of medicinal substances of biological origin and especially medicinal substances obtained from plants.

Environmental pharmacology

Environmental pharmacology is a new discipline.[9] Focus is being given to understand gene–environment interaction, drug-environment interaction and toxin-environment interaction. There is a close collaboration between environmental science and medicine in addressing these issues, as healthcare itself can be a cause of environmental damage or remediation. Human health and ecology are intimately related. Demand for more pharmaceutical products may place the public at risk through the destruction of species. The entry of chemicals and drugs into the aquatic ecosystem is a more serious concern today. In addition, the production of some illegal drugs pollutes drinking water supply by releasing carcinogens.[10] This field is intimately linked with Public Health fields.

Experimental pharmacology

Experimental pharmacology involves the study of pharmacology through bioassay, to test the efficacy and potency of a drug.

Dental pharmacology

Dental pharmacology relates to the study of drugs commonly used in the treatment of dental disease.[citation needed]

Scientific background

The study of chemicals requires intimate knowledge of the biological system affected. With the knowledge of cell biology and biochemistry increasing, the field of pharmacology has also changed substantially. It has become possible, through molecular analysis of receptors, to design chemicals that act on specific cellular signaling or metabolic pathways by affecting sites directly on cell-surface receptors (which modulate and mediate cellular signaling pathways controlling cellular function).
A chemical has, from the pharmacological point-of-view, various properties. Pharmacokinetics describes the effect of the body on the chemical (e.g. half-life and volume of distribution), and pharmacodynamics describes the chemical's effect on the body (desired or toxic).
When describing the pharmacokinetic properties of the chemical that is the active ingredient or active pharmaceutical ingredient (API), pharmacologists are often interested in L-ADME:
  • Liberation – How is the API disintegrated (for solid oral forms (breaking down into smaller particles)), dispersed, or dissolved from the medication?
  • Absorption – How is the API absorbed (through the skin, the intestine, the oral mucosa)?
  • Distribution – How does the API spread through the organism?
  • Metabolism – Is the API converted chemically inside the body, and into which substances. Are these active (as well)? Could they be toxic?
  • Excretion – How is the API excreted (through the bile, urine, breath, skin)?
Medication is said to have a narro

Comments

Popular posts from this blog

Only remember

vit d3